
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 123 (2016) 1–8
http://d
0165-16

n Corr
E-m
journal homepage: www.elsevier.com/locate/sigpro
Fast communication
Imposing uniqueness to achieve sparsity

Keith Dillon n, Yu-Ping Wang
Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
a r t i c l e i n f o

Article history:
Received 17 July 2015
Received in revised form
11 November 2015
Accepted 11 December 2015
Available online 29 December 2015

Keywords:
Sparsity
Regularization
Uniqueness
Non-negativity
Underdetermined linear systems
Convex optimization
x.doi.org/10.1016/j.sigpro.2015.12.009
84/& 2015 Elsevier B.V. All rights reserved.

esponding author. Tel.: þ1 504 988 1547.
ail address: kdillon1@tulane.edu (K. Dillon).
a b s t r a c t

In this paper we take a novel approach to the regularization of underdetermined linear
systems. Typically, a prior distribution is imposed on the unknown to hopefully force a
sparse solution, which often relies on uniqueness of the regularized solution (something
which is typically beyond our control) to work as desired. But here we take a direct
approach, by imposing the requirement that the system takes on a unique solution. Then
we seek a minimal residual for which this uniqueness requirement holds. When applied
to systems with non-negativity constraints or forms of regularization for which sufficient
sparsity is a requirement for uniqueness, this approach necessarily gives a sparse result.
The approach is based on defining a metric of distance to uniqueness for the system, and
optimizing an adjustment that drives this distance to zero. We demonstrate the perfor-
mance of the approach with numerical experiments.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Modern approaches to sparse solutions in linear
regression or inverse problems are often viewed as MAP
estimation [11] techniques. For example, Basis Pursuit [5]
and LASSO [20], employing the ℓ1-norm, can be for-
mulated with a Gaussian likelihood for additive noise and
a Laplace prior [13]. However, the choice of prior dis-
tribution itself is only imposed because it often achieves a
desirable result, namely a result that, in the noise-free
case, can be shown to be equal to the minimum ℓ0-norm
solution. Hence the approach generally amounts to a
heuristic technique. Indeed a great deal of research in
compressed sensing [24] has focused on theoretical guar-
antees for when the desired sparse result will be achieved
for an underdetermined linear system. For example, the
major conditions for uniqueness, such as the restricted
isometry property [4], the nullspace property [8], or the k-
neighborliness property [9], provide guarantees for when
the minimum ℓ1-norm solution for the noise-free
underdetermined system equals the minimal ℓ0-norm
solution. The key to this relationship is uniqueness of the
minimizer (i.e., the situation where there is only solution
which achieves the minimum).

This question of a unique minimizer is mathematically
equivalent to the question of whether a related linear
system has a unique non-negative solution. Based on this
relationship, [10,1–3,22,23] utilize results regarding the ℓ1
norm or derive similar results to develop uniqueness
conditions for non-negative systems. Conceptually this
situation is much easier to envision; an underdetermined
system has m equations and n unknowns with mon, and
non-negativity provides n inequalities to further restrict
solutions. For the solution to be unique, we need at least
n�m of the inequalities to be active and acting as equal-
ities somehow due to the structure of the problem. This, in
turn, means the corresponding elements of the unknown
must be zero and hence the unknown must be sparse.
Note that the non-negative system that is related to the set
of minimum ℓ1-norm minimizers is a case with a very
specific structure. For non-negative systems with more
general structure, a new and easily verified rowspace
condition [3] must also be tested in order to determine if
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the system can have a unique non-negative solution.
Overall, the implication of uniqueness is the same that we
can use a more computationally tractable norm to calcu-
late the ℓ0-norm result.

When non-negativity constraints are imposed as true
prior knowledge in an inverse problem, such as to impose
known physical properties, for example, the perspective
based on establishing uniqueness guarantees fits quite
well. But for applications such as variable or basis selec-
tion, the approach again amounts to a heuristic with a true
goal of achieving a solution with desirable properties, i.e.,
one that is sparse. Slawski and co-authors have investi-
gated the theory and applications of non-negative least
squares (NNLS) as a competing technique versus the
popular ℓ1-norm models for such applications [17–19].
Other researchers have extended non-negativity-based
techniques to include additional means to enforce spar-
sity. In [12] non-negativity constraints are combined with
ℓ1-norm regularization. In [15] non-negativity constraints
are incorporated into an orthogonal matching pursuit
algorithm. However in all these techniques, uniqueness of
the solution is important to the quality of the results, yet is
a property which depends on both the matrix and the
solution, hence cannot be guaranteed. And so the authors
investigate the incorporation of additional heuristics,
based on conventional sparse regularization techniques, to
increase the likelihood of a unique solution.

The technique presented here differs in that we pro-
pose an “additional ingredient” that is a requirement for
uniqueness itself, hence we guarantee a unique solution.
We will focus on the non-negative system as a general
case, and start in the next section by reviewing the rela-
tionship to the ℓ1-regularized and non-negative least-
squares techniques. Then we will derive uniqueness con-
ditions for the solution set and provide an algorithm to
enforce them on the system. Finally we demonstrate the
performance of the algorithm with simulated examples
where we will demonstrate the ability of the method to
enforce unique solutions for a variety of models.
2. Theory

We will address the linear system Ax¼ b̂þn¼ b,
where A is a known m�n matrix with mon; b is a known
vector we wish to approximate with few columns of A, and
x is an unknown vector we would like to estimate; n is a
“noise” vector about which we only have statistical infor-
mation. The NNLS technique [14] solves minxZ0‖Ax�b‖22,
or equivalently,

x� ¼ arg min
xZ0;Δb

‖Δb‖22

Ax¼ bþΔb: ð1Þ
From this perspective we can view NNLS as seeking a
minimal system adjustment to get a feasible x� in the set

SNN ¼ xjAx¼ b0; xZ0
� �

; ð2Þ
where b0 ¼ bþΔb. It can be shown that for all optimal
solutions ðΔb�;x�Þ to Eq. (1), the component Δb� will be
unique. Hence we only need to consider the set SNN given
this Δb�. In other words, we can use results from the well-
known noise-free case. A necessary condition for unique-
ness is the requirement that the rowspace of A intersects
the positive orthant [3]. Mathematically this means the
system ATy¼ β has some solution y for which β has all
positive elements. Geometrically it means that the poly-
tope [25] formed by SNN must be finite in size [7]. Note that
if a general system was converted into an equivalent non-
negative one by replacing the general signal with the dif-
ference of two non-negative signals representing positive
and negative channels, the resulting system matrix would
violate the positive orthant condition. We will presume
throughout this paper that the rowspace of A intersects
the positive orthant for all matrices.

Of course, the NNLS technique need not result in a
sparse solution at all. Hence some techniques also include
ℓ1-regularization or other ingredients in addition to non-
negativity. On the other hand, many popular techniques,
such as LASSO, impose ℓ1-regularization alone. LASSO (in
the form of Basis Pursuit denoising) can be viewed as a
heuristic technique where λ is chosen to trade off sparsity
of the solution with minimal adjustment to the model,
which can be posed in a form similar to Eq. (1), as follows:

x� ¼ argmin
x;Δb

‖Δb‖22þλJxJ1
� �

Ax¼ bþΔb: ð3Þ
When A is underdetermined (i.e., n4m), the situation we
are interested in here, it is known that the LASSO solution
may not be unique [16]. However, as with NNLS, the
residual Δb is always unique [21]. So, again, we can
address the question of uniqueness by focusing on a noise-
free case, here the Basis Pursuit problem, α¼minx JxJ1
subject to Ax¼ b0. In this case the question of uniqueness
applies to the solutions in the set, F ¼ fxARnjAx¼
b0; JxJ1rαg, which can be posed as a set of the form SNN.
However, for intuition consider F as depicted in Fig. 1, the
intersection of ℓ1-norm ball of radius α, and the affine set
of solutions to the linear system, fxjAx¼ b0g. For the
example in Fig. 1, the solution is non-unique, as F contains
an interval of points on the nearest face of the ball. This set
F is the set of all possible minimizers which achieve an
equal minimum ℓ1 norm. It is not clear what is the best
way to handle this situation. From the MAP estimation
perspective, any point on the intersection is equally likely;
the distribution for Pðxjb0Þ will be uniform over F. A typical
algorithm may yield a very-undesirable dense solution in
the interior of F.

In all the above cases, the most fundamental question
we would like to be able to answer is whether an under-
determined system has a unique non-negative solution.
That will be the first goal of this paper. If desired, we can
then easily apply our results to other types of problems
such as NNLS, Basis Pursuit, and LASSO via a mathemati-
cally equivalent system as noted above.

2.1. Uniqueness conditions

To start, we will presume that we have a compatible
non-negatively constrained system determined by A and
b, arising either directly from our application, or, for



Fig. 1. Nonunique intersection on ℓ1-norm ball and line containing
solutions, demonstrating potential failure of ℓ1-norm based methods. The
intersection is the set F, depicted by the red segment, which is contained
in the nearest face of the ball. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of
this paper.)
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example, from the NNLS or LASSO technique (from which
we will henceforth replace b0 with b), and wish to inves-
tigate the uniqueness of the solutions in the set SNN. By
compatible non-negatively constrained system here we
mean at least one non-negative solution must exist. In [7]
we investigated bounds for the solution set for non-
negative systems by using linear programming to find
the maximum and minimum of each element of the
unknown. A similar technique was employed in [21] to test
for uniqueness in LASSO. We can extend this idea to form
conditions for uniqueness of xk, the kth element of x, over
SNN. First we test for uniqueness as follows:

δk ¼max
xZ0

xk�min
xZ0

xk ¼ max
xZ0;x0 Z0

xk�x0k
� �

Ax¼ b Ax¼ b Ax¼ b

Ax0 ¼ b: ð4Þ
To find an upper bound on δk, we use duality theory for
linear programs [6]. The dual of Eq. (4) is the linear pro-
gram,

~δk ¼min
y;y0

bT ðy�y0Þ

ATyZek
ATy0rek; ð5Þ

where ek is a vector of zeros except a one in the kth ele-
ment. For intuition, consider what we get without non-
negativity constraints, where the possible solutions are the
affine set fxjAx¼ bg. It is straightforward to show that xk
takes on a unique value if and only if there is a solution ŷ
to AT ŷ ¼ ek. If we write these conditions as ŷT

ðkÞA¼ eTk for
k¼ 1;…;n, and combine them into a matrix system, we
find that these versions of the dual variables ŷ are simply
columns of the left inverse Ŷ

T
A¼ I, where I is the identity
matrix. If we similarly combine the n dual optimization
problems of Eq. (5), we get the following combined pro-
blem for all elements (note that inequalities operate
element-wise for matrices throughout this paper):

α¼min
Y;Y0 ;d

JdJ

Y�Y0� �Tb¼ d

YTAZI

Y0TArI; ð6Þ
where J � J can be any norm. This vector d has elements
which are the lengths of sides of the smallest box con-
taining SNN, the set of non-negative solutions. Its magni-
tude (JdJ , the “distance from uniqueness”) gives us a
metric for how tightly the system restricts the possible
values of the unknown. Its length is the worst-case dis-
tance between any two members of the solution set.

Theorem 1. The compatible system Ax¼ b has a unique
non-negative solution if and only if d¼ 0.

Proof. If d¼ 0, then all ~δk are zero. As ~δk are upper bounds
for δk, each xk can only take on a unique scalar value and
hence x is unique. For the reverse direction, since we
assume that the system is compatible, Eq. (4) has an
optimal solution. Further note that the optimal d will be
the same regardless of norm, hence we can presume that
an ℓ1-norm is used and use the strong duality conditions
for linear programs to require that ~δk ¼ δk. If x is unique
then we must have δk ¼ 0 for all k, and by strong duality
this means ~δk ¼ 0 for all k, i.e., d¼ 0.□

2.2. Algorithm

Next we assume that we are given a system which does
not have a unique solution, and our goal is to find a
“nearby” system for which d¼ 0, by adjusting b. Specifi-
cally we desire a residual Δb such that ðY�Y0ÞT ðbþΔbÞ ¼ 0
in Eq. (6). However, a variable Δb here produces a non-
convex quadratic constraint, as we will have products
between Δb and both Y and Y0. We will address this with
an iterative algorithm based on successive linear approx-
imations of this constraint. Given a tolerance μ, we solve
the following algorithm for successive updates to b:

Step 1: Solve Eq. (6) for d�, Y� and Y0�.
Step 2: If JdJrμ, stop, otherwise choose ϵ where

0rϵo JdJ , and solve Eq. (7) for Δb and x using
the d�, Y� and Y0� computed in Step 1:

β¼ min
xZ0;Δb

JΔbJ

J ðY��Y0�ÞTΔbþd� Jrϵ

Ax¼ bþΔb ð7Þ
The constraints here are linear, so the problem is
convex. Note that Eq. (7) can be viewed as a
NNLS problem (compare to Eq. (1)) with an
added constraint to impose uniqueness.

Step 3: Update b by accumulating new residual adjust-
ment from Step 2 (i.e., b¼ bþΔb) and goto
Step 1.



Fig. 2. True, Non-negative-ℓ1 (NNL1), and unique solutions for uniform
random matrix example, n¼100, m¼30, K ¼ 15¼ Jxtrue J0.
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The following theorem proves that a solution found via
the above algorithm produces a system with a unique
solution following an iteration where we picked ϵ¼ 0,
which we may choose to do in a single iteration or after
multiple iterations (the only difference will be how glob-
ally optimal the resulting Δb might be). In practice we
should use a small positive value instead of zero for ϵ, due
to numerical precision issues.

Lemma 1. The optimal x� found by Eq. (7) with ϵ¼ 0, using
the d�, Y� and Y0� computed in Eq. (6), will be the unique
non-negative solution in the new system modified by the
optimal Δb�, i.e., fx�g ¼ fxjAx¼ bþΔb�;xZ0g.

Proof. This holds for any feasible point for the problem of
Eq. (7), the optimal is simply a choice with minimal resi-
dual. Given a feasible point ðx̂ ;Δb̂Þ, x̂ is a solution in the set
xjAx¼ bþΔb̂; xZ0

n o
, which means the system is com-

patible. Further, Δb̂ solves the system ðY��Y0�ÞTΔb̂ ¼ �d�.
By combining the constraints from Eq. (6) with our equa-
tion for Δb̂, we have

ðY��Y0�ÞT ðbþΔb̂Þ ¼ 0

Y�TAZI

Y0�TArI: ð8Þ
These equations are the constraints of Eq. (6) with b
replaced by bþΔb̂. This means we can perform the opti-
mization problem of Eq. (6) with b also replaced by bþΔb̂
and get the minimizer d¼ 0. By Theorem 1, this means the
non-negative solution to Ax¼ bþΔb̂ must be unique.□

It can further be shown that it is possible to achieve any
desired tolerance μ on the size of the solution set by
choosing ϵ¼ μ, using the fact that μ¼ JdðfinalÞ J ¼ J ðY�

�Y0�ÞT ðbþΔbÞJ ¼ J ðY��Y0�ÞTΔb̂þd� Jrϵ. Finally we
argue that the closer we make ϵ to Jd� J in each iteration,
the more accurately our linearized constraint fits the true
constraint at each iteration, as it is quadratic. This is not
necessary for Theorem 1, which only deals with feasible
points, but in practice it suggests that we can achieve a
smaller net JΔbJ by performing more iterations. We will
demonstrate the performance of single versus multiple
iteration settings in the next section.
Fig. 3. Displacement ðdÞ from uniqueness for original and unique system,
and output vector ðbÞ for original and unique system.
3. Simulations

We performed a variety of numerical simulations to
demonstrate the technique. For each simulation, given a
particular n and m, we formed a matrix using a choice of
model to generate elements. For most cases we generated
a true x with K nonzero values at uniformly random
locations, and generated each of those K values using a
uniform distribution over the interval [0, 1] (unless stated
otherwise). We added Gaussian noise to the resulting
measurement vector b to achieve an SNR of 10:1. We then
performed a denoising step using NNLS to make a com-
patible system as a starting point. Finally we estimated d
for the system, if it was unbounded (meaning our system
did not fulfill the positive orthant condition), or if it was
very small (meaning our system essentially had a unique
non-negative solution already), the system was discarded
and a new one was randomly generated with the same
parameters. For the algorithm we used a tolerance of
μ¼ 0:01.

For example, Fig. 2 gives the true solution and the
unique solution estimated via our technique for a matrix
generated using uniformly distributed random elements
with values in [0,1], with n¼100, m¼30, and K¼15. For
this example we used ϵ¼ 0:01, requiring only a single
iteration to achieve the final tolerance. Fig. 2 also gives the
non-negative ℓ1 (min ℓ1-norm over non-negative x). In
Fig. 3 we give d for the initial system as (denoted as d0),
which gives the range each element of the solution could
initially take. After running our algorithm we computed d
again ðduniqueÞ, measuring the range taken by each element
of fxjAx¼ bþΔb;xZ0g. As we can see from Fig. 3, dunique

is essentially zero meaning our system now admits a
unique solution. Fig. 3 also gives the corresponding initial
ðb0Þ and adjusted ðb0þΔb¼ buniqueÞ versions of b. We can
see that b0 required only a very-small adjustment to form
bunique in this case. Figs. 4 and 5 provide similar results for



Fig. 4. True, minimum ℓ1 (L1), and unique solutions for non-bounded
example, n¼100, m¼30, K¼15.

Fig. 5. Displacement ðdÞ from uniqueness for original and unique system,
and output vector ðbÞ for original and unique system. Non-bounded
example.

Fig. 6. Number of positive elements ðxiZ0:02Þ for true, Non-negative ℓ1
denoised (NNL1), and unique solutions for 100 different noisy realiza-
tions of uniform model, SNR¼10, n¼100, m¼25, K ¼ 10¼ Jxtrue J0.

Fig. 7. Number of positive elements ðxiZ0:02Þ for true, Non-negative ℓ1
denoised (NNL1), and unique solutions for 100 different noisy realiza-
tions of convolution model, SNR¼10, n¼100, m¼11, K ¼ 10¼ Jxtrue J0. In
this case, the NNL1 technique often failed to yield a sparse solution while
the proposed technique consistently succeeded using the multiple-
iteration algorithm.
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a non-bounded example for which the minimum ℓ1
solution was not unique, using a model that performs a
low-pass filtering operation. The system was converted to
a non-negative system in 2n dimensions, then the algo-
rithm was applied to enforce a unique solution, and finally
the resulting system was converted back to n dimensions,
yielding a system with a unique minimum ℓ1 norm.

We investigated the algorithm's performance by gen-
erating 100 realizations using models with uniform ran-
dom elements (Fig. 6) and binary random elements
(Fig. 7), where for each realization we used a new random
A, new true x (changing both the values and locations),
and new noise. We compared the cardinality of the result
computed with our algorithm both with single-iteration
settings, and with a multiple-iteration approach where ϵ
was chosen to be 90 percent of the maximum element of d
computed in each previous iteration. For the single-
iteration unique solutions in Fig. 6, we find a clear trend
towards sparser solutions as Jd0 J (the initial distance
from uniqueness) increases, while in Fig. 7 we see that
only the multiple-iteration approach produced non-trivial
results. We also computed the minimum non-negative ℓ1
solutions using the same denoised starting point as the
proposed algorithm, and plotted the cardinalities of all of
these solutions versus Jd0 J . We see that for the uniform
system, we found comparable performance with both the
proposed multiple-iteration algorithm and the NNL1
solution, while for the binary system, the proposed algo-
rithm demonstrated superior performance, consistently
returning a sparse solution.

Next we repeated similar 100-realization simulations
for a range of different model sizes using matrices formed
by three different random distributions. The results are
summarized in Figs. 8–10, where the range of resulting
cardinalities achieved at each m is shown by the solid



Fig. 8. Range of cardinality of solutions for Non-negative ℓ1 denoised
(NNL1), and unique solutions using ϵ¼ 0:9 maxðdÞ, for 100 different noisy
realizations of uniform random system, for each value of m ranging in
steps of 5 between 5 and 30 (600 total realizations), SNR¼10, n¼100,
K ¼ 10¼ Jxtrue J0.

Fig. 9. Range of cardinality of solutions for Non-negative ℓ1 denoised
(NNL1), and unique solutions using ϵ¼ 0:9 maxðdÞ, for 100 different noisy
realizations of Gaussian random system, again for each m between 5 and
30, SNR¼10, n¼100, K ¼ 10¼ Jxtrue J0.

Fig. 10. Range of cardinality of solutions for Non-negative ℓ1 denoised
(NNL1), and unique solutions using ϵ¼ 0:9 maxðdÞ, for 100 different noisy
realizations of binary random system for each m between 5 and 20,
SNR¼10, n¼50, K ¼ 10¼ Jxtrue J0. Again we see the failure to achieve a
sparse solution for many cases with the NNL1 technique.

Fig. 11. Average Pearson correlation between estimates and true solu-
tions for each m for the simulations of Figs. 8–10. Since the NNL1 solu-
tions often failed to be sparse for the Binary model, and hence the cor-
relation may demonstrate over-fitting, a non-negative LASSO estimate
was calculated using increased regularization to achieve comparable
sparsity to the UNIQUE solution.
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regions. For each model we varied m between a minimum
of 5 and a maximum of the highest that was reasonably
possible to still find non-unique systems (systems for
which the solution was not already unique without
adjustment) with that approach, generally around 25–30.
At around m¼5 we see that the proposed algorithm began
to return all-zero results as the single-iteration case did,
suggesting that a more sophisticated linearization is nee-
ded (e.g., more iterations). At higher values of m, we see
comparable results for the proposed and NNL1 algorithms
for the uniform and Gaussian models, generally achieving
a cardinality comparable to m. For the binary model, we
see that the NNL1 algorithm consistently returns many
non-sparse results as seen in Fig. 7. In Fig. 11 we give the
average (Pearson) correlation for each m for the methods
between the estimate and the true solution. For the uni-
form and Gaussian models we see that the proposed
algorithm generally achieved a slightly higher correlation
with the true solution for smaller values of m, presumably
due to the bias of the ℓ1 estimate. At higher m the NNL1
correlation was slightly higher, probably due to the 0.01
gap the proposed algorithm allows in uniqueness for
numerical reasons. For the binary model, the NNL1
achieved a higher correlation, but recall that this was the
case where NNL1 often returned dense solutions. To make
a fairer comparison, we imposed ℓ1 regularization via
LASSO to achieve a comparable sparsity for the failure
cases (the regularization parameter was increased until a
solution with cardinality of at most m was achieved),
which led to a lower correlation overall.



Fig. 12. Cardinality and fractional change in Δb for unique solutions
using proposed algorithm versus LASSO with ϵ¼ 0:9 maxðdÞ, for 100
different noisy realizations of uniform random system, for SNR¼10,
m¼15, n¼100, K ¼ 10¼ Jxtrue J0. We see that the proposed algorithm
generally achieved a sparse solution with cardinality comparable to m,
and with a change in b comparable to the SNR. Attempting to manu-
facture a system that has a unique solution using LASSO was far less
successful, yielding results that were overly sparse with an excessively
large fractional change in b.
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Finally we compared the proposed approach to a LASSO-
based technique in achieving a system with a unique solu-
tion. We compared the proposed algorithm with a non-
negative LASSO algorithm, wherein we increased the reg-
ularization parameter λ until the adjusted system fxjAx¼
bþΔbLASSO; xZ0g has a unique solution (the smallest λ
where d is below our threshold of 0.01). Note that this is
stricter than a requirement that only the set of LASSO mini-
mizers be unique. In Fig. 12 we give the cardinality and
fractional residual (computed as JΔbJ=JbJ) for each of the
100 realizations. We see that generally the LASSO approach
used a much larger adjustment to the system to achieve a
unique system solution, and for many cases was unable to
produce a non-trivial unique solution.
4. Discussion

In this paper we derived uniqueness conditions for the
non-negative solution to an underdetermined linear sys-
tem using optimization theory. The conditions provide a
kind of distance from uniqueness for when the system is
non-unique, which we used in an algorithm to adjust the
system and make a similar system which has a unique
solution. We provided simulated examples to demonstrate
the qualitative behavior of the technique where we
demonstrated a broad ability to find non-trivial unique
solutions over a range of systems. For systems with ele-
ments drawn from a continuous distribution, performance
appears comparable to ℓ1-based methods, while for more
structured systems such as the binary model, the perfor-
mance of the proposed algorithm appears to be superior,
presumably due to difficulties in achieving a unique opti-
mal with the ℓ1-norm in such cases. The question of
reconstruction error is beyond the scope of this paper as
we do not make assumptions about matrix properties
beyond the positive orthant condition, but the correlations
in the simulations proved comparable to and often better
than achieved with ℓ1-based techniques, suggesting that
this would be a fruitful area for further research.

Multiple improvements or variations are possible with
this algorithm. A more intelligent choice of iteration settings
would likely address the failure cases, such as with small m.
More generally, note that Lemma 1 applies to any feasible
point, meaning we can choose an optimal however we wish.
We chose the minimum residual on Δb defined using the ℓ2-
norm, but we might employ a different norm such as the ℓ1-
norm, for example, to get a sparse residual. We might also
impose other desired properties such as additional solution
sparsity via a ℓ1-norm regularization term on the unique
solution itself, yielding a hybrid approach. We might also
utilize other means to convert a general linear system into a
non-negative one which satisfies the positive orthant condi-
tion, for example by augmenting the matrix with an addi-
tional row that is optimized somehow for the particular
scenario. Finally, it would be straightforward to replace the
non-negativity constraint with other constraints, such as a
conic constraint or other convex inequalities.

The approach of finding the nearest unique solution is
interesting from multiple perspectives. First is simply its
ability to indirectly provide a sparse solution, as sparsity is
the basis for uniqueness in a non-negative system and the
related ℓ1-norm based techniques. But another interesting
perspective is the idea of uniqueness itself as a form of
prior knowledge or model design requirement. If our goal
is to choose Δb to minimize the uncertainty in x, then a
choice for which x must be unique is the best possible in a
sense. The unique solution might also be utilized as a
component of the solution set, as in dimensionality
reduction, rather than a model in itself.
Acknowledgments

The authors wish to thank the NIH (R01 GM109068,
R01 MH104680) and NSF (1539067) for support.
References

[1] A.M. Bruckstein, M. Elad, M. Zibulevsky, On the uniqueness of non-
negative sparse & redundant representations, in: IEEE International
Conference on Acoustics, Speech and Signal Processing, 2008,
ICASSP 2008, IEEE, Las Vegas, NV, USA, March 2008, pp. 5145–5148.

[2] A.M. Bruckstein, M. Elad, M. Zibulevsky, On the uniqueness of
nonnegative sparse solutions to underdetermined systems of
equations, IEEE Trans. Inf. Theory 54 (November (11)) (2008)
4813–4820.

[3] A.M. Bruckstein, M. Elad, M. Zibulevsky, Sparse non-negative solu-
tion of a linear system of equations is unique, in: The Third Inter-
national Symposium on Communications, Control and Signal Pro-
cessing, 2008, ISCCSP 2008, IEEE, St. Julians, Malta, March 2008, pp.
762–767.

[4] Emmanuel J. Candes, The restricted isometry property and its
implications for compressed sensing, C. R. Math. 346 (May (9–10))
(2008) 589–592.

[5] Scott Shaobing Chen, David L. Donoho, Michael A. Saunders, Atomic
decomposition by basis pursuit, SIAM Rev. 43 (January (1)) (2001)
129–159.

[6] George Dantzig, Linear Programming and Extensions, Princeton
University Press, Princeton, NJ, USA, 1998 August.

http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref2
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref2
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref2
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref2
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref2
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref4
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref4
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref4
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref4
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref5
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref5
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref5
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref5
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref6
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref6


K. Dillon, Y.-P. Wang / Signal Processing 123 (2016) 1–88
[7] Keith Dillon, Yeshaiahu Fainman, Bounding pixels in computational
imaging, Appl. Opt. 52 (April (10)) (2013) D55–D63.

[8] David L. Donoho, Michael Elad, Optimally sparse representation in
general (nonorthogonal) dictionaries via 1 minimization, Proc. Natl.
Acad. Sci. USA 100 (March (5)) (2003) 2197–2202.

[9] David L. Donoho, Jared Tanner, Neighborliness of randomly pro-
jected simplices in high dimensions, Proc. Natl. Acad. Sci. USA 102
(July (27)) (2005) 9452–9457.

[10] David L. Donoho, Jared Tanner, Sparse nonnegative solution of
underdetermined linear equations by linear programming, Proc.
Natl. Acad. Sci. USA 102 (July (27)) (2005) 9446–9451.

[11] Steven M. Kay, Fundamentals of Statistical Signal Processing: Esti-
mation Theory, Prentice-Hall PTR, Upper Saddle River, NJ, USA, 1998.

[12] M.A. Khajehnejad, A.G. Dimakis, Xu Weiyu, B. Hassibi, Sparse
recovery of nonnegative signals with minimal expansion, IEEE Trans.
Signal Process. 59 (January (1)) (2011) 196–208.

[13] Samuel Kotz, Tomasz Kozubowski, Krzysztof Podgorski, The Laplace
Distribution and Generalizations: A Revisit With Applications to
Communications, Economics, Engineering, and Finance, Springer,
New York, NY, USA, 2001 June.

[14] C. Lawson, R. Hanson, Solving least squares problems. Classics in
Applied Mathematics. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, January 1995.

[15] Tsung-han Lin, H.T. Kung, Stable and Efficient Representation
Learning with Nonnegativity Constraints, 2014, pp. 1323–1331.

[16] Michael R. Osborne, Brett Presnell, Berwin A. Turlach, On the LASSO
and its dual, J. Comput. Graph. Stat. 9 (June (2)) (2000) 319–337.

[17] Martin Slawski, Matthias Hein, Sparse recovery by thresholded non-
negative least squares, in: J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F.
Pereira, K.Q. Weinberger (Eds.), Advances in Neural Information
Processing Systems, vol. 24, Curran Associates, Inc., Granada, Spain,
2011, pp. 1926–1934.

[18] Martin Slawski, Matthias Hein, Non-negative least squares for high-
dimensional linear models: consistency and sparse recovery without
regularization, Electron. J. Stat. 7 (2013) 3004–3056.

[19] Martin Slawski, Matthias Hein, E. Campus, Sparse recovery for pro-
tein mass spectrometry data, in: Practical Applications of Sparse
Modeling, 2014, p. 79.

[20] Robert Tibshirani, Regression shrinkage and selection via the Lasso,
J. R. Stat. Soc. Ser. B 58 (1994) 267–288.

[21] Ryan J. Tibshirani, The Lasso problem and uniqueness, Electron. J.
Stat. 7 (2013) 1456–1490.

[22] Meng Wang, Ao Tang, Conditions for a unique non-negative solution
to an underdetermined system, in: The 47th Annual Allerton Con-
ference on Communication, Control, and Computing, 2009, Allerton
2009, IEEE, Monticello, IL, USA, September 2009, pp. 301–307.

[23] Meng Wang, Weiyu Xu, Ao Tang, Unique “nonnegative” solution to
an underdetermined system: from vectors to matrices, IEEE Trans.
Signal Process. 59 (March (3)) (2011) 1007–1016.

[24] Rebecca M. Willett, Roummel F. Marcia, Jonathan M. Nichols, Com-
pressed sensing for practical optical imaging systems: a tutorial,
Opt. Eng. 50 (7) (2011) 072601–072613.

[25] Günter M. Ziegler, Lectures on Polytopes, Springer, New York, NY,
USA, 1995.

http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref7
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref7
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref7
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref8
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref8
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref8
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref8
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref9
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref9
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref9
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref9
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref10
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref10
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref10
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref10
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref11
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref11
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref12
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref12
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref12
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref12
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref13
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref13
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref13
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref13
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref16
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref16
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref16
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref18
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref18
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref18
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref18
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref20
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref20
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref20
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref21
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref21
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref21
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref23
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref23
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref23
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref23
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref24
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref24
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref24
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref24
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref25
http://refhub.elsevier.com/S0165-1684(15)00436-3/sbref25

	Imposing uniqueness to achieve sparsity
	Introduction
	Theory
	Uniqueness conditions
	Algorithm

	Simulations
	Discussion
	Acknowledgments
	References




